Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Physiol Behav ; 276: 114453, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159589

RESUMO

BACKGROUNDS AND AIMS: Childhood obesity is increasing substantially across the world. The World Obesity Federation (WOF) and World Health Organization (WHO) predicted that in 2030 > 1 billion people will be obese, and by 2035 over 4 billion will reach obesity worldwide. According to WHO, the world soon cannot afford the economic cost of obesity, and we need to act to stop obesity acceleration now. Data in the literature supports that the first 1000 days of life are essential in preventing obesity and related adversities. Therefore, using basic research, the present a study that focuses on the immediate effect of overnutrition and serotonin modulation during the lactation period. METHODS: Using a neonatal overfeeding model, male Wistar rats were divided into four groups based on nutrition or serotonin modulation by pharmacological treatment up to 22 days of life. Cellular and mitochondrial function markers, oxidative stress biomarkers and mRNA levels of hedonic and homeostatic genes were evaluated. RESULTS: Our data showed that overfeeding during lactation decrease NAD/NADH ratio, citrate synthase activity, and increase ROS production. Lipid and protein oxidation were increased in overfed animals, with a decrease in antioxidant defenses, we also observe a differential expression of mRNA levels of homeostatic and hedonic genes. On the contrary, serotonin modulation with selective serotonin reuptake inhibitors treatment reduces harmful effects caused by overnutrition. CONCLUSION: Early effects of overnutrition significantly affect the prefrontal cortex at molecular and cellular level, which could mediate obesity-related neurodegenerative dysfunction.


Assuntos
Hipernutrição , Obesidade Pediátrica , Criança , Humanos , Ratos , Animais , Feminino , Masculino , Sobrepeso , Ratos Wistar , Serotonina , Hipernutrição/complicações , Hipernutrição/metabolismo , Ingestão de Alimentos , Córtex Pré-Frontal/metabolismo , RNA Mensageiro
2.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833890

RESUMO

Early overnutrition is associated with cardiometabolic alterations in adulthood, likely attributed to reduced insulin sensitivity due to its crucial role in the cardiovascular system. This study aimed to assess the long-term effects of early overnutrition on the development of cardiovascular insulin resistance. An experimental childhood obesity model was established using male Sprague Dawley rats. Rats were organized into litters of 12 pups/mother (L12-Controls) or 3 pups/mother (L3-Overfed) at birth. After weaning, animals from L12 and L3 were housed three per cage and provided ad libitum access to food for 6 months. L3 rats exhibited elevated body weight, along with increased visceral, subcutaneous, and perivascular fat accumulation. However, heart weight at sacrifice was reduced in L3 rats. Furthermore, L3 rats displayed elevated serum levels of glucose, leptin, adiponectin, total lipids, and triglycerides compared to control rats. In the myocardium, overfed rats showed decreased IL-10 mRNA levels and alterations in contractility and heart rate in response to insulin. Similarly, aortic tissue exhibited modified gene expression of TNFα, iNOS, and IL-6. Additionally, L3 aortas exhibited endothelial dysfunction in response to acetylcholine, although insulin-induced relaxation remained unchanged compared to controls. At the molecular level, L3 rats displayed reduced Akt phosphorylation in response to insulin, both in myocardial and aortic tissues, whereas MAPK phosphorylation was elevated solely in the myocardium. Overfeeding during lactation in rats induces endothelial dysfunction and cardiac insulin resistance in adulthood, potentially contributing to the cardiovascular alterations observed in this experimental model.


Assuntos
Resistência à Insulina , Hipernutrição , Obesidade Pediátrica , Doenças Vasculares , Criança , Humanos , Feminino , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Obesidade Pediátrica/complicações , Insulina/metabolismo , Lactação/fisiologia , Hipernutrição/complicações , Hipernutrição/metabolismo , Doenças Vasculares/metabolismo , Miocárdio/metabolismo , Peso Corporal
3.
Brain Res Bull ; 195: 109-119, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813046

RESUMO

Metabolic programming may be induced by reduction or enhancement of litter size, which lead to neonatal over or undernutrition, respectively. Changes in neonatal nutrition can challenge some regulatory processes in adulthood, such as the hypophagic effect of cholecystokinin (CCK). In order to investigate the effects of nutritional programming on the anorexigenic function of CCK in adulthood, pups were raised in small (SL, 3 pups per dam), normal (NL, 10 pups per dam), or large litters (LL, 16 pups per dam), and on postnatal day 60, male rats were treated with vehicle or CCK (10 µg/Kg) for the evaluation of food intake and c-Fos expression in the area postrema (AP), nucleus of solitary tract (NTS), and paraventricular (PVN), arcuate (ARC), ventromedial (VMH), and dorsomedial (DMH) nuclei of the hypothalamus. Overnourished rats showed increased body weight gain that was inversely correlated with neuronal activation of PaPo, VMH, and DMH neurons, whereas undernourished rats had lower body weight gain, inversely correlated with increased neuronal activation of PaPo only. SL rats showed no anorexigenic response and lower neuron activation in the NTS and PVN induced by CCK. LL exhibited preserved hypophagia and neuron activation in the AP, NTS, and PVN in response to CCK. CCK showed no effect in c-Fos immunoreactivity in the ARC, VMH, and DMH in any litter. These results indicate that anorexigenic actions, associated with neuron activation in the NTS and PVN, induced by CCK were impaired by neonatal overnutrition. However, these responses were not disrupted by neonatal undernutrition. Thus, data suggest that an excess or poor supply of nutrients during lactation display divergent effects on programming CCK satiation signaling in male adult rats.


Assuntos
Desnutrição , Hipernutrição , Ratos , Masculino , Animais , Núcleo Hipotalâmico Paraventricular/metabolismo , Colecistocinina/farmacologia , Colecistocinina/metabolismo , Ratos Wistar , Núcleo Solitário/metabolismo , Ratos Sprague-Dawley , Hipotálamo/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Hipernutrição/metabolismo , Peso Corporal , Ingestão de Alimentos
4.
Neurochem Int ; 162: 105454, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462683

RESUMO

It is well known that overnutrition, overweight, and obesity in children can modulate brain mechanisms of plasticity, monoaminergic systems, and mitochondrial function. The immediate effect of overnutrition during the developmental period has not been thoroughly examined in rats until the present. This study sought to evaluate the impact on adult rats of early life overfeeding and fluoxetine treatment from post-natal day 1 (PND1) to post-natal day 21 (PND21) relative to mitochondrial function, oxidative balance, and expression of specific monoaminergic genes in the hippocampus. The following were evaluated: mitochondrial function markers, oxidative stress biomarkers, dopamine-and serotonin-related genes, and BDNF mRNA levels. Overfeeding during the lactation period deregulates cellular metabolism and the monoaminergic systems in the hippocampus. Strikingly, serotonin modulation by fluoxetine treatment protected against some of the effects of early overnutrition. We conclude that overfeeding during brain development induce detrimental effects in mitochondria and in the genes that regulate homeostatic status that can be the molecular mechanisms related to neurological diseases.


Assuntos
Hipocampo , Hipernutrição , Animais , Feminino , Ratos , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Obesidade Pediátrica/metabolismo , Serotonina/metabolismo , Hipernutrição/metabolismo , Hipernutrição/fisiopatologia
5.
Am J Physiol Endocrinol Metab ; 323(6): E503-E516, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288336

RESUMO

Metabolic syndrome (MS) and obesity have become a worldwide epidemic with an alarming prevalence in women of reproductive age. Maternal metabolic condition is considered a risk factor for adverse birth outcomes and long-term MS. In this study, we developed a rabbit model of maternal overnutrition via the chronic intake of a high-fat and carbohydrate diet (HFCD), and we determined the effects of this diet on maternal metabolism and offspring metabolic set points and temporal metabolic regulation in adult life. Before and during pregnancy, the female rabbits that consumed the HFCD exhibited significant changes in body weight, serum levels of analytes associated with carbohydrate and lipid metabolism, levels of liver and kidney damage markers, and liver histology. Our data suggest that rabbits are a valuable model for studying the development of MS associated with the chronic intake of unbalanced diets and fetal metabolic programming. Furthermore, the offspring of overnourished dams exhibited considerable changes in 24-h serum metabolite profiles in adulthood, with notable sexual dimorphism. These data suggest that maternal nutritional conditions due to the chronic intake of an HFCD adversely impact key elements related to the development of circadian rhythmicity in offspring.NEW & NOTEWORTHY Maternal overnutrition previous and during pregnancy leads to long-term changes in the 24-h regulation and setpoint of metabolic profiles of the offspring.


Assuntos
Síndrome Metabólica , Hipernutrição , Efeitos Tardios da Exposição Pré-Natal , Animais , Gravidez , Humanos , Feminino , Coelhos , Fenômenos Fisiológicos da Nutrição Materna , Hipernutrição/metabolismo , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Síndrome Metabólica/etiologia , Carboidratos
6.
Int J Obes (Lond) ; 46(6): 1138-1144, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35173277

RESUMO

BACKGROUND/OBJECTIVES: Alteration of the perinatal nutritional environment is an important risk factor for the development of metabolic diseases in later life. The hormone leptin plays a critical role in growth and development. Previous studies reported that postnatal overnutrition increases leptin secretion during the pre-weaning period. However, a direct link between leptin, neonatal overnutrition, and lifelong metabolic regulation has not been investigated. METHODS: We used the small litter mouse model combined with neonatal leptin antagonist injections to examine whether attenuating leptin during early life improves lifelong metabolic regulation in postnatally overnourished mice. RESULTS: Postnatally overnourished mice displayed rapid weight gain during lactation and remained overweight as adults. These mice also showed increased adiposity and perturbations in glucose homeostasis in adulthood. Neonatal administration of a leptin antagonist normalized fat mass and insulin sensitivity in postnatally overnourished mice. These metabolic improvements were associated with enhanced sensitivity of hypothalamic neurons to leptin. CONCLUSIONS: Early postnatal overnutrition causes metabolic alterations that can be permanently attenuated with the administration of a leptin antagonist during a restricted developmental window.


Assuntos
Leptina , Hipernutrição , Animais , Feminino , Hipotálamo/metabolismo , Leptina/metabolismo , Camundongos , Obesidade/metabolismo , Hipernutrição/metabolismo , Gravidez , Aumento de Peso
7.
Front Endocrinol (Lausanne) ; 13: 785674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197931

RESUMO

The prenatal period, during which a fully formed newborn capable of surviving outside its mother's body is built from a single cell, is critical for human development. It is also the time when the foetus is particularly vulnerable to environmental factors, which may modulate the course of its development. Both epidemiological and animal studies have shown that foetal programming of physiological systems may alter the growth and function of organs and lead to pathology in adulthood. Nutrition is a particularly important environmental factor for the pregnant mother as it affects the condition of offspring. Numerous studies have shown that an unbalanced maternal metabolic status (under- or overnutrition) may cause long-lasting physiological and behavioural alterations, resulting in metabolic disorders, such as obesity and type 2 diabetes (T2DM). Various diets are used in laboratory settings in order to induce maternal obesity and metabolic disorders, and to alter the offspring development. The most popular models are: high-fat, high-sugar, high-fat-high-sugar, and cafeteria diets. Maternal undernutrition models are also used, which results in metabolic problems in offspring. Similarly to animal data, human studies have shown the influence of mothers' diets on the development of children. There is a strong link between the maternal diet and the birth weight, metabolic state, changes in the cardiovascular and central nervous system of the offspring. The mechanisms linking impaired foetal development and adult diseases remain under discussion. Epigenetic mechanisms are believed to play a major role in prenatal programming. Additionally, sexually dimorphic effects on offspring are observed. Therefore, further research on both sexes is necessary.


Assuntos
Diabetes Mellitus Tipo 2 , Hipernutrição , Adulto , Animais , Peso ao Nascer , Diabetes Mellitus Tipo 2/complicações , Feminino , Feto/metabolismo , Humanos , Masculino , Obesidade/metabolismo , Hipernutrição/metabolismo , Gravidez
8.
Int J Obes (Lond) ; 46(5): 1018-1026, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35091671

RESUMO

OBJECTIVES: Maternal overfeeding during gestation may lead to adverse metabolic programming in the offspring mediated by epigenetic alterations. Potential reversal, in early life, of these alterations may help in the prevention of future cardio-metabolic conditions. In this context, our aims were: (1) to study the effects of maternal overfeeding on the metabolic and epigenetic programming of offspring's adipose tissue; and (2) to test the potential of postnatal metformin treatment to reverse these changes. METHODS: We used a swine animal model where commercial production sows were either overfed or kept under standard diet during gestation, and piglets at birth were randomly assigned to metformin (n = 16 per group) or vehicle treatment during lactation (n = 16 per group). RESULTS: Piglets born to overfed sows showed a worse metabolic profile (higher weight, weight gain from birth and abdominal circumference; all p < 0.05) together with altered serological markers (increased HOMA-IR, fructosamine, total cholesterol, C-Reactive Protein and lower HMW adiponectin; all p < 0.05). The visceral adipose tissue also showed altered morphology (increased adipocyte area, perimeter and diameter; all p < 0.05), as well as changes in gene expression (higher CCL2 and INSR, lower DLK1; all p < 0.05), and in DNA methylation (96 hypermethylated and 99 hypomethylated CpG sites; FDR < 0.05). Metformin treatment significantly ameliorated the abnormal metabolic profile, decreasing piglets' weight, weight gain from birth, abdominal circumference and fructosamine (all p < 0.05) and reduced adipocyte area, perimeter, and diameter in visceral adipose tissue (all p < 0.05). In addition, metformin treatment potentiated several associations between gene expression in visceral adipose tissue and the altered metabolic markers. CONCLUSIONS: Maternal overfeeding during gestation leads to metabolic abnormalities in the offspring, including adipose tissue alterations. Early metformin treatment mitigates these effects and could help rescue the offspring's metabolic health.


Assuntos
Metformina , Hipernutrição , Tecido Adiposo/metabolismo , Animais , Feminino , Frutosamina/metabolismo , Humanos , Metformina/farmacologia , Mães , Hipernutrição/metabolismo , Suínos , Aumento de Peso
9.
Lab Invest ; 102(5): 474-484, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34923569

RESUMO

The aim of this study was to determine the mechanism by which SIRT6 regulates glucolipid metabolism disorders. We detected histological and molecular changes in Sprague-Dawley rats as well as in BRL 3A and INS-1 cell lines subjected to overnutrition and starvation. SIRT6, SREBP1c, and glucolipid metabolism biomarkers were identified by fluorescence co-localization, real-time PCR, and western blotting. Gene silencing studies were performed. Recombinant SIRT6, AMPK agonist (AICAR), mTOR inhibitor (rapamycin), and liver X receptor (LXR) agonist (T0901317) were used to pre-treated in BRL 3A and INS-1 cells. Real-time PCR and western blotting were used to detect related proteins, and cell counting was utilized to detect proliferation. We obtained conflicting results; SIRT6 and SREBP1c appeared in both the liver and pancreas of high-fat and hungry rats. Recombinant SIRT6 alleviated the decrease in AMPKα and increase in mTORC1 (complex of mTOR, Raptor, and Rheb) caused by overnutrition. SIRT6 siRNA reversed the glucolipid metabolic disorders caused by the AMPK agonist and mTOR inhibitor but not by the LXR agonist. Taken together, our results demonstrate that SIRT6 regulates glycolipid metabolism through AMPKα-mTORC1 regulating SREBP1c in the liver and pancreas induced by overnutrition and starvation, independent of LXR.


Assuntos
Metabolismo dos Lipídeos , Fígado , Pâncreas , Sirtuínas , Proteína de Ligação a Elemento Regulador de Esterol 1 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Fígado/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Hipernutrição/metabolismo , Pâncreas/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sirtuínas/genética , Sirtuínas/metabolismo , Inanição , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo
10.
Cell Rep ; 37(10): 110075, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879284

RESUMO

The neuroendocrine system coordinates metabolic and behavioral adaptations to fasting, including reducing energy expenditure, promoting counterregulation, and suppressing satiation and anxiety to engage refeeding. Here, we show that steroid receptor coactivator-2 (SRC-2) in pro-opiomelanocortin (POMC) neurons is a key regulator of all these responses to fasting. POMC-specific deletion of SRC-2 enhances the basal excitability of POMC neurons; mutant mice fail to efficiently suppress energy expenditure during food deprivation. SRC-2 deficiency blunts electric responses of POMC neurons to glucose fluctuations, causing impaired counterregulation. When food becomes available, these mutant mice show insufficient refeeding associated with enhanced satiation and discoordination of anxiety and food-seeking behavior. SRC-2 coactivates Forkhead box protein O1 (FoxO1) to suppress POMC gene expression. POMC-specific deletion of SRC-2 protects mice from weight gain induced by an obesogenic diet feeding and/or FoxO1 overexpression. Collectively, we identify SRC-2 as a key molecule that coordinates multifaceted adaptive responses to food shortage.


Assuntos
Metabolismo Energético , Jejum/metabolismo , Comportamento Alimentar , Hipotálamo/metabolismo , Neurônios/metabolismo , Coativador 2 de Receptor Nuclear/metabolismo , Obesidade/metabolismo , Hipernutrição/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Ansiedade/psicologia , Modelos Animais de Doenças , Jejum/psicologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células HEK293 , Humanos , Hipotálamo/fisiopatologia , Masculino , Camundongos Knockout , Coativador 2 de Receptor Nuclear/genética , Obesidade/genética , Obesidade/fisiopatologia , Obesidade/psicologia , Hipernutrição/genética , Hipernutrição/fisiopatologia , Hipernutrição/psicologia , Pró-Opiomelanocortina/genética , Resposta de Saciedade , Transdução de Sinais , Aumento de Peso
11.
Nutrients ; 13(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34959754

RESUMO

This study evaluates the capacity of a bread enriched with fermentable dietary fibres to modulate the metabolism and nutrients handling between tissues, gut and peripheral, in a context of overfeeding. Net fluxes of glucose, lactate, urea, short chain fatty acids (SCFA), and amino acids were recorded in control and overfed female mini-pigs supplemented or not with fibre-enriched bread. SCFA in fecal water and gene expressions, but not protein levels or metabolic fluxes, were measured in muscle, adipose tissue, and intestine. Fibre supplementation increased the potential for fatty acid oxidation and mitochondrial activity in muscle (acox, ucp2, sdha and cpt1-m, p < 0.05) as well as main regulatory transcription factors of metabolic activity such as pparα, pgc-1α and nrf2. All these features were associated with a reduced muscle fibre cross sectional area, resembling to controls (i.e., lean phenotype). SCFA may be direct inducers of these cross-talk alterations, as their feces content (+52%, p = 0.05) was increased in fibre-supplemented mini-pigs. The SCFA effects could be mediated at the gut level by an increased production of incretins (increased gcg mRNA, p < 0.05) and an up-regulation of SCFA receptors (increased gpr41 mRNA, p < 0.01). Hence, consumption of supplemented bread with fermentable fibres can be an appropriate strategy to activate muscle energy catabolism and limit the establishment of an obese phenotype.


Assuntos
Tecido Adiposo/metabolismo , Fibras na Dieta/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Hipernutrição/metabolismo , Aminoácidos/metabolismo , Animais , Pão , Suplementos Nutricionais , Modelos Animais de Doenças , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Feminino , Alimentos Fermentados , Glucose/metabolismo , Incretinas/metabolismo , Intestinos/metabolismo , Ácido Láctico/metabolismo , Suínos , Porco Miniatura , Ureia/metabolismo
12.
Genes (Basel) ; 12(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34828259

RESUMO

Maternal obesity is a rapidly evolving universal epidemic leading to acute and long-term medical and obstetric health issues, including increased maternal risks of gestational diabetes, hypertension and pre-eclampsia, and the future risks for offspring's predisposition to metabolic diseases. Epigenetic modification, in particular DNA methylation, represents a mechanism whereby environmental effects impact on the phenotypic expression of human disease. Maternal obesity or overnutrition contributes to the alterations in DNA methylation during early life which, through fetal programming, can predispose the offspring to many metabolic and chronic diseases, such as non-alcoholic fatty liver disease, obesity, diabetes, and chronic kidney disease. This review aims to summarize findings from human and animal studies, which support the role of maternal obesity in fetal programing and the potential benefit of altering DNA methylation to limit maternal obesity related disease in the offspring.


Assuntos
Doença Crônica , Metilação de DNA/fisiologia , Doenças Metabólicas/genética , Obesidade Materna/genética , Efeitos Tardios da Exposição Pré-Natal , Animais , Suscetibilidade a Doenças , Feminino , Desenvolvimento Fetal/genética , Humanos , Recém-Nascido , Masculino , Obesidade Materna/complicações , Obesidade Materna/metabolismo , Hipernutrição/complicações , Hipernutrição/genética , Hipernutrição/metabolismo , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Fatores de Risco
13.
Am J Physiol Endocrinol Metab ; 321(5): E702-E713, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34632797

RESUMO

In chronic obesity, activated adipose tissue proinflammatory cascades are tightly linked to metabolic dysfunction. Yet, close temporal analyses of the responses to obesogenic environment such as high-fat feeding (HFF) in susceptible mouse strains question the causal relationship between inflammation and metabolic dysfunction, and/or raises the possibility that certain inflammatory cascades play adaptive/homeostatic, rather than pathogenic roles. Here, we hypothesized that CTRP6, a C1QTNF family member, may constitute an early responder to acute nutritional changes in adipose tissue, with potential physiological roles. Both 3-days high-fat feeding (3dHFF) and acute obesity reversal [2-wk switch to low-fat diet after 8-wk HFF (8wHFF)] already induced marked changes in whole body fuel utilization. Although adipose tissue expression of classical proinflammatory cytokines (Tnf-α, Ccl2, and Il1b) exhibited no, or only minor, change, C1qtnf6 uniquely increased, and decreased, in response to 3dHFF and acute obesity reversal, respectively. CTRP6 knockout (KO) mouse embryonic fibroblasts (MEFs) exhibited increased adipogenic gene expression (Pparg, Fabp4, and Adipoq) and markedly reduced inflammatory genes (Tnf-α, Ccl2, and Il6) compared with wild-type MEFs, and recombinant CTRP6 induced the opposite gene expression signature, as assessed by RNA sequencing. Consistently, 3dHFF of CTRP6-KO mice induced a greater whole body and adipose tissue weight gain compared with wild-type littermates. Collectively, we propose CTRP6 as a gene that rapidly responds to acute changes in caloric intake, acting in acute overnutrition to induce a "physiological inflammatory response" that limits adipose tissue expansion.NEW & NOTEWORTHY CTRP6 (C1qTNF6), a member of adiponectin gene family, regulates inflammation and metabolism in established obesity. Here, short-term high-fat feeding in mice is shown to increase adipose tissue expression of CTRP6 before changes in the expression of classical inflammatory genes occur. Conversely, CTRP6 expression in adipose tissue decreases early in the course of obesity reversal. Gain- and loss-of-function models suggest CTRP6 as a positive regulator of inflammatory cascades, and a negative regulator of adipogenesis and adipose tissue expansion.


Assuntos
Adipocinas/fisiologia , Tecido Adiposo/patologia , Inflamação/genética , Fenômenos Fisiológicos da Nutrição/genética , Adipogenia/genética , Adipocinas/genética , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica , Embrião de Mamíferos , Feminino , Células HEK293 , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão/genética , Hipernutrição/genética , Hipernutrição/metabolismo , Hipernutrição/patologia , Gravidez
14.
Nutrients ; 13(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34684464

RESUMO

As a precursor for a universal metabolic coenzyme, vitamin B1, also known as thiamine, is a vital nutrient in all living organisms. We previously found that high-dose thiamine therapy prevents overnutrition-induced hepatic steatosis in sheep by enhancing oxidative catabolism. Based on this capacity, we hypothesized that thiamine might also reduce whole-body fat and weight. To test it, we investigated the effects of high-dose thiamine treatment in sheep under overnutrition and calorie-restricted undernutrition to respectively induce positive energy balance (PEB) and negative energy balance (NEB). Eighteen mature ewes were randomly assigned to three treatment groups (n = 6 each). The control group (CG) was administered daily with subcutaneous saline, whereas the T5 and T10 groups were administered daily with equivoque of saline containing 5 mg/kg and 10 mg/kg of thiamine, respectively. Bodyweight and blood biochemistry were measured twice a week for a period of 22 days under PEB and for a consecutive 30 days under NEB. Surprisingly, despite the strong effect of thiamine on liver fat, no effect on body weight or blood glucose was detectable. Thiamine did, however, increase plasma concentration of non-esterified fatty acids (NEFA) during NEB (575.5 ± 26.7, 657.6 ± 29.9 and 704.9 ± 26.1 µEqL-1 for CG, T5, and T10, respectively: p < 0.05), thereby favoring utilization of fatty acids versus carbohydrates as a source of energy. Thiamine increased serum creatinine concentrations (p < 0.05), which paralleled a trending increase in urea (p = 0.09). This may indicate an increase in muscle metabolism by thiamine. Reduction of fat content by thiamine appears more specific to the liver than to adipose tissue. Additional studies are needed to evaluate the potential implications of high-dose vitamin B1 therapy in muscle metabolism.


Assuntos
Desnutrição/metabolismo , Hipernutrição/metabolismo , Ovinos/metabolismo , Tiamina/metabolismo , Tecido Adiposo/metabolismo , Animais , Biomarcadores , Glicemia , Peso Corporal , Creatinina/sangue , Metabolismo Energético , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Lipólise , Micronutrientes/metabolismo , Minerais/sangue , Tiamina/administração & dosagem , Tiamina/uso terapêutico
15.
Neurosci Lett ; 765: 136261, 2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34562518

RESUMO

The ability to generate new hippocampal neurons throughout adulthood and successfully integrate them into existing neural networks is critical to cognitive function, while disordered regulation of this process results in neurodegenerative or psychiatric disease. Consequently, identifying the molecular mechanisms promoting homeostatic hippocampal neurogenesis in adults is essential to understanding the etiologies of these disorders and developing therapeutic interventions. For example, recent evidence identifies a strong association between metabolic function and adult hippocampal neurogenesis. Hippocampal neural stem cell (NSC) fate dynamically fluctuates with changes in substrate availability and energy status (AMP/ATP and NAD+/NADH ratios). Furthermore, many metabolic hormones, such as insulin, insulin-like growth factors, and leptin exhibit dual functions also modulating hippocampal neurogenesis and neuron survivability. These diverse metabolic inputs to NSC's from various tissues seemingly suggest the existence of a system in which energy status can finely modulate hippocampal neurogenesis. Supporting this hypothesis, interventions promoting energy balance, such as caloric restriction, intermittent fasting, and exercise, have shown encouraging potential enhancing hippocampal neurogenesis and cognitive function. Overall, there is a clear relationship between whole body energy status, adult hippocampal neurogenesis, and neuron survival; however, the molecular mechanisms underlying this phenomenon are multifaceted. Thus, the aim of this review is to analyze the literature investigating energy status-mediated regulation of adult neurogenesis in the hippocampus, highlight the neurocircuitry and intracellular signaling involved, and propose impactful future directions in the field.


Assuntos
Restrição Calórica , Hipocampo/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Hipernutrição/fisiopatologia , Adulto , Ingestão de Energia/fisiologia , Exercício Físico/fisiologia , Jejum/metabolismo , Hipocampo/citologia , Humanos , Modelos Animais , Hipernutrição/metabolismo
16.
Diabetes ; 70(12): 2771-2784, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34544729

RESUMO

We previously demonstrated that male, but not female, Swiss Webster mice are susceptible to diabetes, with incidence increased by early overnutrition and high-fat diet (HFD). In this study, we investigated how HFD in Swiss Webster males and females during preweaning, peripubertal, and postpubertal periods alters glucose homeostasis and diabetes susceptibility. In males, HFD throughout life resulted in the highest diabetes incidence. Notably, switching to chow postpuberty was protective against diabetes relative to switching to chow at weaning, despite the longer period of HFD exposure. Similarly, HFD throughout life in males resulted in less liver steatosis relative to mice with shorter duration of postpubertal HFD. Thus, HFD timing relative to weaning and puberty, not simply exposure length, contributes to metabolic outcomes. Females were protected from hyperglycemia regardless of length or timing of HFD. However, postpubertal HFD resulted in a high degree of hepatic steatosis and adipose fibrosis, but glucose regulation and insulin sensitivity remained unchanged. Interestingly, peri-insulitis was observed in the majority of females but was not correlated with impaired glucose regulation. Our findings reveal critical periods of HFD-induced glucose dysregulation with striking sex differences in Swiss Webster mice, highlighting the importance of careful consideration of HFD timing relative to critical developmental periods.


Assuntos
Dieta Hiperlipídica , Glucose/metabolismo , Fenômenos Fisiológicos da Nutrição Pré-Natal , Animais , Animais Recém-Nascidos , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suscetibilidade a Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Feminino , Idade Gestacional , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos , Hipernutrição/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Caracteres Sexuais , Fatores de Tempo
17.
Sci Rep ; 11(1): 14032, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234216

RESUMO

Overconsumption of saturated fats promotes obesity and type 2 diabetes. Excess weight gain in early life may be particularly detrimental by promoting earlier diabetes onset and potentially by adversely affecting normal development. In the present study we investigated the effects of dietary fat composition on early overnutrition-induced body weight and glucose regulation in Swiss Webster mice, which show susceptibility to high-fat diet-induced diabetes. We compared glucose homeostasis between a high-fat lard-based (HFL) diet, high in saturated fats, and a high-fat olive oil/fish oil-based (HFO) diet, high in monounsaturated and omega-3 fats. We hypothesized that the healthier fat profile of the latter diet would improve early overnutrition-induced glucose dysregulation. However, early overnutrition HFO pups gained more weight and adiposity and had higher diabetes incidence compared to HFL. In contrast, control pups had less weight gain, adiposity, and lower diabetes incidence. Plasma metabolomics revealed reductions in various phosphatidylcholine species in early overnutrition HFO mice as well as with diabetes. These findings suggest that early overnutrition may negate any beneficial effects of a high-fat diet that favours monounsaturated and omega-3 fats over saturated fats. Thus, quantity, quality, and timing of fat intake throughout life should be considered with respect to metabolic health outcomes.


Assuntos
Dieta Hiperlipídica , Gorduras Insaturadas na Dieta/metabolismo , Metabolismo Energético , Ácidos Graxos Ômega-3/metabolismo , Hipernutrição/metabolismo , Fatores Etários , Animais , Biomarcadores , Diabetes Mellitus Experimental , Glucose/metabolismo , Hormônios/sangue , Hormônios/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Fosfatidilcolinas/sangue
18.
J Endocrinol ; 250(3): 81-91, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34101615

RESUMO

We tested whether chronic supplementation with soy isoflavones could modulate insulin secretion levels and subsequent recovery of pancreatic islet function as well as prevent metabolic dysfunction induced by early overfeeding in adult male rats. Wistar rats raised in small litters (SL, three pups/dam) and normal litters (NL, nine pups/dam) were used as models of early overfeeding and normal feeding, respectively. At 30 to 90 days old, animals in the SL and NL groups received either soy isoflavones extract (ISO) or water (W) gavage serving as controls. At 90 days old, body weight, visceral fat deposits, glycemia, insulinemia were evaluated. Glucose-insulin homeostasis and pancreatic-islet insulinotropic response were also determined. The early life overnutrition induced by small litter displayed metabolic dysfunction, glucose, and insulin homeostasis disruption in adult rats. However, adult SL rats treated with soy isoflavones showed improvement in glucose tolerance, insulin sensitivity, insulinemia, fat tissue accretion, and body weight gain, compared with the SL-W group. Pancreatic-islet response to cholinergic, adrenergic, and glucose stimuli was improved in both isoflavone-treated groups. In addition, different isoflavone concentrations increased glucose-stimulated insulin secretion in islets of all groups with higher magnitude in both NL and SL isoflavone-treated groups. These results indicate that long-term treatment with soy isoflavones inhibits early overfeeding-induced metabolic dysfunction in adult rats and modulated the process of insulin secretion in pancreatic islets.


Assuntos
Ilhotas Pancreáticas/efeitos dos fármacos , Isoflavonas/farmacologia , Doenças Metabólicas/prevenção & controle , Animais , Animais Recém-Nascidos , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Insulina/metabolismo , Resistência à Insulina , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/fisiologia , Isoflavonas/isolamento & purificação , Masculino , Doenças Metabólicas/etiologia , Doenças Metabólicas/patologia , Hipernutrição/complicações , Hipernutrição/metabolismo , Hipernutrição/patologia , Gravidez , Ratos , Ratos Wistar , Fatores Sexuais , /química
19.
Cell Metab ; 33(7): 1418-1432.e6, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33761312

RESUMO

Associative learning allows animals to adapt their behavior in response to environmental cues. For example, sensory cues associated with food availability can trigger overconsumption even in sated animals. However, the neural mechanisms mediating cue-driven non-homeostatic feeding are poorly understood. To study this, we recently developed a behavioral task in which contextual cues increase feeding even in sated mice. Here, we show that an insular cortex to central amygdala circuit is necessary for conditioned overconsumption, but not for homeostatic feeding. This projection is marked by a population of glutamatergic nitric oxide synthase-1 (Nos1)-expressing neurons, which are specifically active during feeding bouts. Finally, we show that activation of insular cortex Nos1 neurons suppresses satiety signals in the central amygdala. The data, thus, indicate that the insular cortex provides top-down control of homeostatic circuits to promote overconsumption in response to learned cues.


Assuntos
Comportamento Alimentar/fisiologia , Córtex Insular/fisiologia , Neurônios/fisiologia , Óxido Nítrico Sintase Tipo I/genética , Hipernutrição/etiologia , Animais , Clozapina/análogos & derivados , Clozapina/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Sinais (Psicologia) , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Feminino , Córtex Insular/efeitos dos fármacos , Córtex Insular/metabolismo , Córtex Insular/patologia , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Hipernutrição/genética , Hipernutrição/metabolismo , Hipernutrição/patologia
20.
Clin Nutr ; 40(4): 1519-1529, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33743287

RESUMO

BACKGROUND & AIMS: Excess nutrient supply, such as high fat and high glucose intake, promotes oxidative stress and advanced glycation end products accumulation. Oxidative stress and AGE accumulation cause pathological elevation of arginase activity and pro-inflammatory signaling implicated in endothelial dysfunction. Several studies showed positive effects of l-arginine supplementation in endothelial function but little is currently known about the role of l-arginine as prevention of endothelial dysfunction caused by excessive nutrient supply (overfeeding). Our aim was to evaluate a possible protective effect of l-arginine on endothelial dysfunction caused by excessive nutrient supply (overfeeding), using human endothelial cells line in an in vitro study. METHODS: Endothelial EA.hy926 cells were pre-treated with 1.72 mM of l-arginine for 24 h and afterwards subjected to nutritional stress (high lipid, high insulin and high glucose concentrations) for further 24 h. After treatment discontinuation, the cells were kept in culture for 48 h, in physiological condition, to evaluate the effects of treatments after normalization. RESULTS: Excess nutrient supply in EA.hy926 cell line showed an increase of oxidative and nitrosative stress, a rise of AGEs production, high arginase activity, leading the cells to acidosis and to cell death. l-arginine pretreatment protects the cells by reducing apoptosis, acidosis, oxidative and nitrosative stress, arginase activity and AGE accumulation. l-arginine pretreatment reduces AGEs generation and accumulation by regulating STAB1 and RAGE gene expression levels. STAB1, acting as receptor scavenger of AGEs, interferes with AGE-RAGE binding and thus prevents activation of intracellular signaling pathways leading to cell damage. Moreover the reduction of oxidative stress promotes a decrease of excessive activation of arginase involved in endothelial dysfunction. The effects of pretreatment with l-arginine last even in the absence of stimuli and despite after treatment discontinuation. CONCLUSIONS: An early l-arginine treatment is able to prevent oxidative stress and AGEs accumulation caused by overfeeding in human endothelial cell line by regulating STAB1/RAGE gene expression and by reducing excess arginase activity. The positive effects of l-arginine pretreatment continue even after treatment discontinuation in normal conditions.


Assuntos
Arginina/farmacologia , Endotélio Vascular/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição/efeitos dos fármacos , Hipernutrição/prevenção & controle , Substâncias Protetoras/farmacologia , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Hipernutrição/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...